

Digital personalised learning in Kenya: findings from a multi-strand implementation research study Rebecca Daltry

Research context: digital personalised learning

Definition

"The use of a digital learning environment that adapts to the individual learner, with the goal of optimising individual and/or collaborative learning processes to enhance cognitive, affective, motivational, metacognitive or efficiency outcomes" (Van Schoors et al., 2021)

Existing evidence **Rapid evidence review**: appears to offer significant promise to improve learning outcomes, including potentially 'out-of-class' and 'out-of-school' learning (Major & Francis, 2020).

Meta-analysis: positive impact on learning outcomes (effect size of 0.18), with greater impact when adaptive (effect size of 0.35; Major et al., 2021)

Evidence gaps

- **1.** Evidence from LMICs (majority of research in HICs)
- 2. Research on "classroom-integrated" DPL (as opposed to "supplementary")

Research design: a multi-strand study

Overarching Research Question

How can a classroom-integrated, digital personalised learning tool most effectively support early-grade numeracy and literacy outcomes in Kenya?

Pedagogical strand:

Method: Design-based research.

Pre-primary: May 2022- Jan 2023 **Primary**: Jan 2024-March 2025

Learning outcomes strand:

Method: Randomised controlled trial(s).

Pre-primary: Oct 2022- Nov 2023 **Primary**: Apr 2024-Nov 2024 Adaptivity and data feedback strand:

Method: A/B/n testing.

Pre-primary: Jan 2023- Aug 2024

Research design: a multi-strand study

Design-based research:

Sample: 6 schools (x13 PP1 and PP2 classes), purposively selected in Mombasa.

Data collection: two cycles, including x25 interviews/focus group, x107 direct/indirect observations, lesson study with x6 teachers.

RCT:

Sample: 291 schools (1995 learners), randomly assigned treatment/ control in Murang'a.

Data collection: baseline, midline and endline assessments using International Development and Early Learning Assessment (IDELA).

A/B/n testing:

Sample: over 5,000 schools across multiple Kenyan counties.

Data collection: x9 A/B/n tests, randomly assigning participants to different software design groups, assessing the impact of various algorithms, interface features and data feedback mechanisms.

Digital personalised learning tool:

- Hardware: 1-2 low-cost Android devices per classroom.
- **Software:** EIDU application.
- Curriculum-aligned content:
 - Teacher interface: digitised lesson plans (Tayari structured pedagogy programme).
 - Learner interface: 348 curriculum-aligned learning units to support pre-primary numeracy and literacy.

• Personalisation:

- Based on each learner's device interaction history.
- Optimises content sequencing to maximise engagement.
- Teacher input informs content selection and distribution.
- **Userbase:** 350k active learners monthly, scaling to government pre-primary schools across 46 counties in Kenya (currently in 22).

Results: statistically significant effect on pre-primary learning outcomes

- Overall standardised effect size of 0.534 SD (comparing treatment and control across four full school terms) - could be interpreted as an additional 0.80 years of learning.
- Effect size of 0.450 SD and 0.449 SD for numeracy and literacy scores respectively (p < 0.001).
- No gendered impact: significant effect for both female and male learners (0.526 SD and 0.543 SD respectively), but absence of a statistically significant interaction between gender and experimental groups (p = 0.638).
- Greater numeracy gain scores for the lowest-performing 25% of learners from baseline assessment: *p* = 0.022.
- Potential trail-off of effect in the second half of the intervention: baseline-midline =
 0.510 SD vs midline-endline = 0.068 SD.

Results: conditions and features of the tool which contribute to impact

A snapshot of findings from other strands of the research:

- Personalisation: two different algorithms (maximising for score vs for engagement) benefitted learning in different ways, depending on learning strand in question - both significantly higher impact than no personalisation.
- Distribution: key challenge of sharing DPL tool equally amongst learners ("fast learners" perceived to receive the tool more frequently).
- Teacher-Al collaboration: providing teachers with the option to override the system-generated content selection significantly improved learners' digital formative assessment scores (p < 0.001).

Implications: what works?

This classroom-integrated model of DPL, aligned with the curriculum and teaching practices, is highly promising.

We need to avoid broad-brush claims about personalisation when making claims about impact.

Investing in and considering the unique contribution of teachers when implementing DPL into existing classroom practice is critical.

Thank you

Rebecca Daltry rebecca@edtechhub.org

@GlobalEdTechHub edtechhub.org